A pre-order principle and set-valued Ekeland variational principle

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ekeland's Variational Principle for Set-Valued Functions

We establish several set-valued function versions of Ekeland’s variational principle and hence provide some sufficient conditions ensuring the existence of error bounds for inequality systems defined by finitely many lower semicontinuous functions.

متن کامل

Critical Point Theorems and Ekeland Type Variational Principle with Applications

We introduce the notion of λ-spaces which is much weaker than cone metric spaces defined by Huang and X. Zhang 2007 . We establish some critical point theorems in the setting of λ-spaces and, in particular, in the setting of complete cone metric spaces. Our results generalize the critical point theorem proposed by Dancs et al. 1983 and the results given by Khanh and Quy 2010 to λ-spaces and con...

متن کامل

$(varphi_1, varphi_2)$-variational principle

In this paper we prove that if $X $ is a Banach space, then for every lower semi-continuous bounded below function $f, $ there exists a $left(varphi_1, varphi_2right)$-convex function $g, $ with arbitrarily small norm,  such that $f + g $ attains its strong minimum on $X. $ This result extends some of the  well-known varitional principles as that of Ekeland [On the variational principle,  J. Ma...

متن کامل

Minimax Theorems on C1 Manifolds via Ekeland Variational Principle

Let X be a Banach space and Φ : X → R of class C1. We are interested in finding critical points for the restriction of Φ to the manifold M = {u ∈ X : G(u) = 1}, where G : X → R is a C1 function having 1 as a regular value. A point u ∈M is a critical point of the restriction of Φ to M if and only if dΦ(u)|TuM = 0 (see the definition in Section 2). Our purpose is to prove two general minimax prin...

متن کامل

On generalized Ekeland's variational principle and equivalent formulations for set-valued mappings

We propose a very weak type of generalized distance called weak τ -function and use it to weaken the assumptions about lower semicontinuity in existing formulations of Ekeland’s variational principle for a kind of minimizers of a set-valued mapping, which is different from the Pareto minimizer, and in recent results which are equivalent to Ekeland’s variational principle.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2014

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2014.05.027